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ABSTRACT
We present a robust approach to incorporating models for the time-variable broadening of the
pulse profile due to scattering in the ionized interstellar medium into profile-domain pulsar
timing analysis. We use this approach to simultaneously estimate temporal variations in both
the dispersion measure (DM) and scattering, together with a model for the pulse profile that
includes smooth evolution as a function of frequency, and the pulsar’s timing model. We
show that fixing the scattering time-scales when forming time-of-arrival estimates, as has been
suggested in the context of traditional pulsar timing analysis, can significantly underestimate
the uncertainties in both DM and the arrival time of the pulse, leading to bias in the timing
parameters. We apply our method using a new, publicly available, GPU-accelerated code, both
to simulations and observations of the millisecond pulsar PSR J1643−1224. This pulsar is
known to exhibit significant scattering variability compared to typical millisecond pulsars, and
we find including low-frequency (<1 GHz) data without a model for these scattering variations
leads to significant periodic structure in the DM, and also biases the astrometric parameters
at the 4σ level, for example, changing proper motion in right ascension by 0.50 ± 0.12.
If low-frequency observations are to be included when significant scattering variations are
present, we conclude it is necessary to not just model those variations, but also to sample the
parameters that describe the variations simultaneously with all other parameters in the model,
a task for which profile domain pulsar timing is ideally suited.

Key words: methods: data analysis – pulsars: general – pulsars: individual: PSR J1643−
1224 – ISM: general.

1 IN T RO D U C T I O N

The eventual detection of gravitational waves in the nanohertz win-
dow using a pulsar timing array (Foster & Backer 1990) will require
a thorough understanding of the myriad mechanisms that can im-
pact either the shape or the time of arrival (ToA) of the pulses of
light from those pulsars. The ionized interstellar medium (IISM) is
known to be the dominant such mechanism in pulsar timing exper-
iments (e.g. Lam et al. 2016), and introduces both changes in the
shape of the profile and delays in the arrival times.

The delays in the arrival times are primarily the result of interstel-
lar dispersion. As the pulse propagates through the ionized plasma
that makes up the IISM, it interacts with free electrons causing a
frequency dependent delay. This delay is proportional the integrated
column density of electrons along our line of sight to the pulsar,
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called the dispersion measure (DM), and scales as ν−2, with ν the
observing frequency. As our line of sight to the pulsar changes
with time, so too does the observed column density, introducing a
time-variable delay in arrival times.

Over the last several years significant progress has been made in
modelling these variations in DM, and in propagating our uncertain-
ties in that model through to the timing parameters, with multiple
different methods in use by groups around the world (e.g. Demorest
et al. 2013; Keith et al. 2013; Lentati et al. 2014).

A more subtle effect due to the IISM is that of scattering, where
inhomogeneities in the IISM cause both intensity variations (called
diffractive scintillation, e.g. Narayan 1992) and also a broadening of
the pulse profile. The impact of scattering, as for DM variations, will
also change with time as our line of sight to the pulsar changes, and
in this paper we will be concerned with how to robustly incorporate
scattering variations into pulsar timing analysis.

Given the complexity of the IISM, and the steep frequency de-
pendence of the impact it has on pulsar timing, one can rightly
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ask why we should not just migrate to high-frequency observations
alone. Indeed, this approach has already resulted in the most sen-
sitive limit on an isotropic gravitational wave background using a
pulsar timing array to date (Shannon et al. 2015). The simple an-
swer is that pulsars are known to have steep spectral indices (Sν ∝
ν−1.8 on average, Maron et al. 2000), and so are much brighter at
lower observing frequencies. Given the strong dependence of the
detection probability of gravitational waves using a pulsar timing
array on the number of pulsars in the array (e.g. Taylor et al. 2016),
being able to include more pulsars by virtue of observing at lower
frequencies where they are brightest has clear benefits.

Previous attempts to model scattering have either made signif-
icant assumptions about a priori unknown quantities, such as the
intrinsic pulse shape, or only consider scattering independent of
other aspects of the model such as the intrinsic variability in the
pulse shape, or DM variations. In both cases, the result is a failure
to propagate the uncertainties from these other parameters into the
scattering measurements.

For example, Löhmer et al. (2001) use profile data from 4.9 GHz
observations to construct a model for the intrinsic pulse profile, and
then assume this model when determining the scattering time-scales
and scaling with frequency. However, significant profile evolution
is known to occur across wide frequency ranges that can bias these
parameter estimates. In this case, the uncertainties on the measured
parameters were multiplied by a factor of 3; however, this is clearly
unsatisfactory, and a more statistically robust approach would be
preferred. In Bhat, Cordes & Chatterjee (2003), no assumptions are
made about the intrinsic shape of the pulse profile; however, the
DM is assumed fixed, and the CLEAN algorithm is sub-optimal when
the scattering time-scale is small.

Further complications arise when wanting to include scatter-
ing variations in timing analysis. Existing approaches have sug-
gested obtaining an estimate for the scattering time-scale, and
then using that to ‘correct’ the ToAs (e.g. Levin et al. 2016).
While cyclic spectroscopy has shown significant promise, the ro-
bustness of the method breaks down for low signal-to-noise ra-
tio (S/N) profiles, where the S/N is less than ∼100 (Palliyaguru
et al. 2015). Even in the high-S/N simulations; however, the ap-
proach advocated is to ‘correct’ the ToAs using estimates of the
scattering delay obtained from the cyclic spectroscopy. In the PSR
J1643−1224 data set analysed in Section 4, the mean S/N per
epoch is ∼90, with a minimum of only 15. We therefore require
an approach that is robust across all observed profile S/N. Fur-
ther, neither approach accounts for the significant covariances that
exist between the scattering time-scales and other parameters of
interest.

We illustrate two of the key challenges associated with incor-
porating scattering measurements into timing analysis in Fig. 1.
We simulate a pulsar with a 4.6 ms period, using a Gaussian pulse
shape with a full-width at half-maximum of 5 per cent pulse phase.
The scattering time-scale is chosen to be 10−4.5 s at a reference
frequency of 1 GHz, consistent with the values observed in our
analysis of PSR J1643−1224 in Section 4. We use a frequency
range of 1.25–1.5 GHz, separated into eight channels, again chosen
to be consistent with a typical 20 cm observation used in Section 4.
In the top left-hand panel, we show the simulated pulse profile at
the lowest frequency channel (red lines, 1263 MHz), and the high-
est frequency channel (black lines, 1475 MHz). We have aligned
the leading edge of the profiles (shown as a zoomed-in region in
the bottom sub-panel), and can see that the trailing edge has been
broadened in the low-frequency channel (shown as a zoomed-in
region in the top sub-panel). In the top right-hand panel, we show

the same thing, however after adding noise to the simulation. By
eye, the scattering is undetectable; however, we will now show that
it is still sufficient to significantly bias parameter estimates when
ignored in the analysis.

In the bottom left-hand panel, we show in black the one- and
two-dimensional marginalized posterior distributions from a three-
dimensional analysis of this simulated observation. The parameters
included in the analysis are as follows:

(i) the ToA, measured in units of phase;
(ii) the DM in units of the TEMPO2 uncertainty;
(iii) log10 of the scattering time-scale, τ , measured in seconds at

a reference frequency of 1 GHz.

One can clearly see that the scattering time-scale is correlated in
a non-linear way with both the pulse ToA and the DM. The ToA
in particular has a bi-modal distribution, with one peak associated
with ‘large’ scattering time-scales (log10 τ � −5), and one associ-
ated with small scattering time-scales (log10 τ � −5). Note that the
peak of the one-dimensional probability distribution for the scat-
tering time-scale is consistent with the simulated value, indicating
that despite being practically invisible by eye, it is still marginally
detected in our analysis.

In the same panel, we show the posterior distributions for the
phase and DM when fixing the scattering time-scale at 10−10

(red lines) and 10−4.4 (blue lines). These correspond to models
with no scattering, or using the maximum-likelihood scattering
time-scale obtained from the three-dimensional analysis. In both
cases, this results in significant bias in both the measured val-
ues and the uncertainties of the other two parameters. In partic-
ular, the measured ToA is completely inconsistent between the
two models, with a difference of approximately 10 μs, two to
three orders of magnitude more than the shift expected from an
isotropic gravitational wave background in pulsar timing obser-
vations given the most stringent current upper limits (Shannon
et al. 2015). While the frequency dependence of scattering varia-
tions will help to decrease their covariance with gravitational waves,
and so will limit how much this bias truly impacts our sensitivity,
clearly leaving such variations unmodelled in the analysis must be
sub-optimal.

In Fig. 1 (bottom right-hand panel), we then compare the pos-
terior distribution for the ToA from the three-dimensional analysis
(black line) to a Gaussian approximation of the posterior (red line).
Typically when forming ToAs, a Gaussian approximation is made
of the true probability density function (PDF) of the arrival time.
While methods such as those presented in Liu et al. (2014) and
Pennucci, Demorest & Ransom (2014), which perform a simulta-
neous fit to broad-band profile data in order to fit for both phase
and DM can be extended to also fit for scattering, the fundamental
approximation of Gaussianity implicit in the ToA forming process
is invalid in regimes such as that shown in Fig. 1. While the Gaus-
sian approximation is conservative, it is sub-optimal compared to
incorporating the full PDF of the arrival time, and while in princi-
ple the full posterior distribution from this kind of analysis could
be used in subsequent pulsar timing analysis, such an approach will
always be an approximation to simply performing the analysis in
the profile domain.

In this paper, we present a solution to these problems by extend-
ing the profile domain pulsar timing framework (Lentati et al. 2017,
and references therein, henceforth L16) to incorporate scattering
variations. This means that the parameters that describe the scat-
tering as a function of time can be estimated simultaneously with
all other parameters in the model. This includes DM variations, the
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Figure 1. Top panels: simulated data before adding noise (left-hand panel) and after (right-hand panel) for a Gaussian pulse profile with a scattering time-scale
of 10−4.5 s at a reference frequency of 1 GHz. Sub-panels show zoomed-in regions of the trailing (top) and leading edges (bottom). Bottom left-hand panel: one-
and two-dimensional marginalized posterior distributions from a three-dimensional analysis of the simulated observation (black lines). We fit simultaneously
for the ToA, the DM and log10 of the scattering time-scale. We compare these parameter estimates with those obtained from a two-dimensional analysis where
we fix the scattering time-scale at 10−10 (red lines) and 10−4.4 (blue lines) chosen to represent no scattering, and the maximum-likelihood time-scale from the
three-dimensional analysis. Bottom right-hand panel: comparison of the true posterior probability distribution for the ToA from the three-dimensional analysis
compared to a Gaussian approximation, as would be performed in traditional pulsar timing analysis.

pulsar timing model, timing noise, pulse jitter, and also any models
for the profile, profile evolution as a function of frequency and pulse
shape instability.

In order to incorporate scattering into the existing framework,
we perform the full analysis in the Fourier domain, as opposed to
the time domain as in L16. In Section 2, we describe this modified
framework, before applying it to simulated, and then real data in
Sections 3 and 4, before ending with some concluding remarks
in Section 5. All the analysis presented subsequently is performed
using a new, publicly available GPU-accelerated code,1 and we have
included the simulated data sets used in Section 3 in the repository
with instructions for how to replicate the results presented in this
paper.

1 https://github.com/LindleyLentati/TempoNest2

2 A F O U R I E R - D O M A I N MO D E L

In the following section, we will build on the methods presented
in L16. In that previous work, the profile-domain analysis was per-
formed in the time-domain. Here, we will define our models in
the Fourier-domain which allows us to optimize the analysis in two
ways. First, the Fourier representation makes it trivial to truncate our
model for the profile at a particular harmonic, decreasing the size
of the linear-algebra operations required to evaluate it. Secondly,
when including scattering in the analysis, we only need to mul-
tiply the pulse broadening function (PBF) with our profile model
in the Fourier domain, as opposed to computing a convolution in
the time domain, and the gradients can likewise be obtained at less
computational expense for all parameters.

For a full description of the general profile domain framework,
we refer the reader to L16. Below we will give details of how the
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methodology has been changed to allow analysis in the Fourier
domain, and of our implementation of models for scattering.

2.1 The profile model

As in L16, we construct our profile model using the shapelet basis
(Refregier 2003), for which the Fourier-transform can be obtained
analytically. In the time domain, shapelets are described by a posi-
tion t, a scale factor � and a set of nmax amplitude parameters, with
which we can construct the set of basis functions:

Bn(t ; �) ≡ �−1/2�n(�−1t), (1)

with �n(t) given by

�n(t) ≡ [
2nn!

√
π

]−1/2
Hn (t) exp

(
− t2

2

)
, (2)

where Hn is the nth Hermite polynomial. In the Fourier domain, the
dimensionless basis functions �n(t) become

�̃n(f ) = in�n(f ) (3)

and the basis functions Bn(t; �) become

B̃n(f ; �) = inBn(f ; �−1) (4)

for Fourier frequencies f. We can then write our profile model in the
Fourier domain, s̃(f , ζ , �), as the sum

s̃(f , ζ ,�) =
nmax∑
n=0

ζn(ν)B̃n(f ; �−1), (5)

where ζ n are the shapelet amplitudes and nmax is the number of
shapelet basis vectors included in the model.

As in L16, we have explicitly written the shapelet amplitudes as a
function of the observing frequency ν, and use a general polynomial
expansion of the shapelet amplitudes with frequency in order to
model any potential smooth profile evolution. This model is defined
such that for the p terms in the polynomial, we can write the nth
shapelet amplitude ζ n(ν) as

ζn(ν) =
p∑

k=0

(ν − νc)kζn,k(ν), (6)

where νc is an arbitrary reference frequency and ζ n, k is the ampli-
tude parameter for the kth polynomial of the nth term in the shapelet
model.

Finally, as in L16, we use the shapelet basis to describe the overall
profile shape, and then scale this in amplitude for each epoch. We
therefore use the zeroth-order term as a reference, taking ζ 0 = 1,
leaving only nmax − 1 free parameters ζ n, which are the ampli-
tudes for the shapelet components with n > 0. Written in this way
equation (5) becomes

s̃(f , A, ζ , �) = A

nmax∑
n=0

ζn(ν)B̃n(f ; �), (7)

with A the overall scaling factor for a particular epoch.

2.2 Shapelet interpolation

As in L16, we do not re-evaluate our shapelet model for every
likelihood calculation, but adopt an interpolation scheme, where
the shapelet basis vectors are pre-computed on a grid from t = 0 up
to the duration of the longest phase bin in the data set. In principle, as
we are performing our analysis in the Fourier domain, we can rotate

the shapelet model exactly by multiplying our complex shapelet
model by a rotation vector:

R(f , δφ) = exp (2πif δφ) , (8)

where δφ is the amount of phase by which to rotate the model.
However, when performing the sampling with Hamiltonian Monte
Carlo (HMC) methods, we must compute the gradients for all the
shapelet amplitudes. As such, if we rotate the profile model to match
the data, we must also rotate all the basis vectors for each profile
in the data set. We find it is more efficient to pre-compute sub-bin
shifts in the profile model, and then to rotate the data by an integer
number of bins, again using equation (8) so that it aligns with the
nearest interpolated set of basis functions. In this way, we need to
perform only a single rotation per profile, which is a significant
computational saving.

As in L16, we use an interpolation interval of 1 ns, chosen to be
sufficiently small that no bias enters our analysis as a result of the
interpolation process.

2.3 Truncating the shapelet model

In addition to the interpolation scheme described in Section 2.2,
the Fourier representation makes it straightforward to truncate the
shapelet model at a particular harmonic. This means that we need
to include only the subset of the harmonics in the profile model
that contribute above some threshold in the analysis. While the
interpolated shapelet model used in L16 significantly reduced the
time taken to evaluate the mean profile compared to numerical
evaluation, it still required an Nb × Nc matrix-vector product, where
Nc is the number of amplitudes in the shapelet model and Nb is the
number of bins in the profile data. By only including Nh harmonics
in the profile model, we can reduce this to a 2Nh × Nc product,
providing an immediate decrease in the computation time of the
profile model by a factor of Nb/2Nh.

In Fig. 2, we compare the time-domain (left-hand panel), and
Fourier-domain (right-hand panel) representations of the time-
averaged profile for PSR J1643−1224, using the 1200 to 1500 MHz
data that we analyse in Section 4. While the time-domain profile
extends across ∼300 phase bins, the Fourier representation con-
tains over 99 per cent of the total signal in only 40 harmonics,
representing a significant reduction in the size of the matrix-vector
multiplication required to evaluate the model. In Section 4, we in-
clude up to the 80th harmonic in our model. Beyond this, the relative
contribution of higher harmonics in the profile model is less than
one part in 1010.

In principle, variations in the shape of the pulse profile may in-
troduce fluctuations at harmonics higher than that required for the
mean profile model. In the analysis presented here, such fluctua-
tions will be absorbed by the white noise component of our model.
In principle, however, one could compare models that incorporate
these higher frequency terms and determine the optimal maximum
harmonic to include in the analysis at the expense of increased
computation time.

2.4 Scattering

The primary addition to the model used in our analysis in this
work, as opposed to L16, is broadening of the pulse profile due
to scattering as the pulse passes through the IISM. In the time-
domain approach, pulse broadening would have to be included as
a convolution of the pulse profile with a PBF. Typically, this is
performed by performing a fast Fourier transform (FFT) of the
model and the PBF, multiplying them in the Fourier domain, and
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Figure 2. Time-averaged profile for PSR J1643−1224, using the 1200–1500 MHz data that we analyse in Section 4 in the time domain (left-hand panel) and
Fourier domain (right-hand panel). While the profile extends across over 300 phase bins, over 99 per cent of the signal is contained in the first 40 Fourier bins.

then transforming back to the time domain. When calculating the
gradient of the likelihood for each parameter in the model, these too
require Fourier-transforms to be performed, and so the complexity
of the likelihood calculation grows rapidly. In the Fourier domain,
we need to perform only the multiplication of the Fourier transform
of the PBF with our profile model, and the gradients can likewise
be obtained trivially for all parameters.

In principle, any model for scattering that allows for the calcula-
tion of a gradient can be incorporated into our analysis. Even if the
analytic Fourier transform of the PBF is not known, if the gradient
can be computed in the time domain, it can then be transformed via
FFT for use in our analysis framework, although this will be less
computationally efficient. In our analysis in this work, we simply
assume a thin screen model for the PBF (Williamson 1972), using
a single parameter for the time-scale, τ , which in the time domain
will be given by

PBF(t, τ̄ , ν, α) = H (t) exp

(
− t

ν−α10τ̄

)
, (9)

where ν is the observing frequency, and H(t) is the Heavyside step
function. Note that as we always require the scattering time-scale
to be positive, we fit for log10 of the scattering time-scale, τ̄ . The
analytic Fourier transform of equation (9) is then given by

PBF(f , τ̄ , ν, α) = 1

(2πf ν−α10τ̄ )2 + 1
+ −2πf ν−α10τ̄

(2πf ν−α10τ̄ )2 + 1
i,

(10)

with gradients with respect to τ̄ and α:

dPBF

dτ̄
= log(10)

((ων−ατ̄ )2 + 1)2

× (−2ω2ν−2α102τ̄ + ων−α10τ̄ ((10τ̄ ων−α)2 − 1)i
)
,

(11)

dPBF

dα
= − log(ν)

((ων−ατ̄ )2 + 1)2

× (−2ω2ν−2α102τ̄ + ων−α10τ̄ ((10τ̄ ων−α)2 − 1)i
)
,

(12)

where as before ‘i’ indicates a complex number and ω = 2πf . We
can then multiply the Fourier representation of our shapelet model,
s̃, by equation (10) to get the scattered profile model.

In our analysis of both simulated data and the PSR J1643 data
set, we use a piecewise-constant τ (t) model for the scattering. This
therefore makes the same assumptions made when modelling DM
variations using the DMX parametrization (Demorest et al. 2013).
In principle, one could also model the power spectrum of the scatter-
ing, under the assumption that it is a smooth, wide-sense stationary
process in the same manner as the smooth model for DM variations
in L16. Deviations from this simple model, such as those predicted
from simulations (Coles et al. 2010), could then be encapsulated as
additional, non-stationary features in the model, in the same manner
as the extreme scattering events observed in PSR J1713+0747 (e.g.
Desvignes et al. 2016; Lentati et al. 2016). However, for this demon-
stration of the profile domain approach, we do not yet consider such
a model.

2.5 Evaluating the profile domain model

The remainder of the timing framework described in L16 requires
only minimal changes to operate on the Fourier representation of
the profile data. As in L16, we consider the data in terms of a set of
Ne epochs. Each epoch i then has Nc, i channels, such that the total
number of profiles Np = ∑Ne

i=1 Nc,i . The profile in the jth channel
of the ith epoch then consists of a set of Ni, j values representing the
amplitude of the profile as measured at a set of times t i,j , which
we denote d i,j . The Fourier representation of the profile data, d̃i,j ,
will therefore be a set of Ni, j/2 + 1 complex values. While in L16
a baseline offset for each profile was required as part of the model,
in the Fourier representation, we simply discard both the DC offset
term and the Nyquist term, so that our final data vector for each
profile is of length Ni, j/2 − 1.

All further parameters, such as those describing pulse jitter or
shape variation, can then be incorporated into our Fourier-domain
shapelet model s̃ in exactly the same manner as in L16. We can
then write the final likelihood that the data are described by the
parameters in our model, which we collectively refer to as θ , as

Pr(d̃|θ ) ∝
Ne∏
i=1

Nc,i∏
j=1

1√
detNi,j

× exp

[
−1

2
(d̃i,j − s̃i,j )T N−1

i,j (d̃ i,j − s̃i,j )

]
, (13)
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Table 1. Timing parameters for PSR J1643−1224.

Measured quantities

Scenario S1 S2 S3

Right ascension (hh:mm:ss) 16:43:38.161512(21) 16:43:38.161572(11) 16:43:38.161510(12)
Declination (dd:mm:ss) −12:24:58.6724(14) −12:24:58.6725(8) −12:24:58.6734(9)
Pulse frequency (s−1) 216.373 337 142 644(5) 216.373 337 142 639 (3) 216.373 337 142 639(4)
First derivative of pulse frequency (s−2) −8.6450(5)× 10−16 −8.6448(3)× 10−16 −8.6450(4)× 10−16

Proper motion in right ascension (mas yr−1) 6.00(10) 5.50(6) 5.85(8)
Proper motion in declination (mas yr−1) 3.8(5) 3.5(3) 3.9(4)
Parallax, π (mas) 1.3(4) 1.3(3) 1.0(3)
Orbital period, Pb (d) 147.017 397 74(6) 147.017 397 75(4) 147.017 397 72(5)
Epoch of periastron, T0 (MJD) 49283.9336(5) 49283.9337(4) 49283.9336(5)
Projected semi-major axis of orbit, x (lt-s) 25.072 6165(29) 25.072 6182(19) 25.072 6165(23)
Longitude of periastron, ω0 (deg) 321.8487(13) 321.8489(10) 321.8485(11)
Orbital eccentricity, e 5.05755(12)× 10−4 5.05757(10)× 10−4 5.05752(11)× 10−4

First derivative of x, ẋ (10−12) −5.2(5)× 10−14 −5.5(3)× 10−14 −5.2(4)× 10−14

Set quantities

Epoch of frequency determination (MJD) 55000 55000 55000
Epoch of position determination (MJD) 55000 55000 55000
Epoch of DM determination (MJD) 55000 55000 55000

where Ni,j is the white noise covariance matrix for the Fourier
domain profile corresponding to the jth channel in the ith epoch,
with elements (Ni, j)mn = σ i, jδmn, with σ i, j the root-mean-square
(rms) deviation of the uncorrelated radiometer noise in the profile.
When performing the analysis with the guided Hamiltonian sampler
(GHS), σ i, j is a free parameter in our analysis for every profile.

3 A PPLICATION TO SIMULATED DATA

In order to test the efficacy of the analysis method described in
the preceding sections, we first apply it to a simulated data set. In
particular, we simulate 100 observational epochs, each assuming
256 MHz of bandwidth split into eight channels, with a central
frequency of 1369 MHz and covering a total time span of 4.5 yr.
Each epoch has an integrated S/N across the observing band of
∼500. Both the MJD and the bandwidth of each simulated epoch
are taken from the 1400 MHz data used in Section 4. We use a
non-evolving, Gaussian profile and a timing model consistent with
that given in Table 1 for PSR J1643−1224.

In addition to this timing model, each epoch is subject to a random
change in the DM with a standard deviation for the variations of
0.007 cm−3 pc and changes in the scattering of 0.81 ± 0.16 ms at a
reference frequency of 1.4 GHz. The scattering is simulated using
the thin screen model described in Section 2.4, with the frequency
scaling parameter, α, equal to 4. We then perform a simultaneous
analysis of all epochs, fitting for the following:

(i) the DM and scattering time-scale at each epoch;
(ii) the frequency scaling of the scattering, α;
(iii) the timing model parameters;
(iv) the pulse amplitude and instrumental noise level in each

profile.

In Fig. 3, we show both the injected values (red crosses) and
mean parameter estimates with 1σ confidence intervals obtained
from this analysis (black points with error bars) for the scattering
(top left-hand panel) and DM variations (top right-hand panel). We
find that the parameter estimates are consistent in both cases, and
that the histogram of the residuals after subtracting the maximum-
likelihood values is consistent with a Gaussian distribution with

unit variance (middle panels, red and black lines respectively). The
Pearson product–moment correlation coefficient between the sim-
ulated and recovered values is 0.999 ± 0.005. In Fig. 3 (bottom
left-hand panel), we then show the one-dimensional marginalized
posterior distribution for the frequency dependence of the scattering
model, α. We indicate the simulated value with a vertical red line,
and find that our inferred values are consistent with the simulation.

We also use this simulated data set to check the impact of not
modelling the scattering variations on the parameter estimates for
the DM variations. In Fig. 3 (bottom right-hand panel), we plot the
difference between the measured DM variations from the simulated
data set when including scattering variations in the model, or when
assuming only a mean scattering time-scale (red points). Not mod-
elling the variations in the scattering leads to significant bias in the
measured DM variations. Note the different scales on the y-axis
of the bottom right-hand panel and top right-hand panel, the bias
introduced in this case is a factor of 2 larger than the DM variations
themselves. We compare this bias with the structure present in the
scattering variations (a shifted and scaled version of the scattering
variations is overplotted in black). The Pearson product–moment
correlation coefficient between the two sets of measurements is
0.92 ± 0.04, indicating a significant correlation between the un-
modelled scattering, and the resultant bias in the DM variations.

4 A PPLI CATI ON TO R EAL DATA

We perform our analysis using observations of PSR J1643−1224
made with the 64-m Parkes radio telescope. We choose to analyse
this particular MSP because it is known to display significant scat-
tering variability, which has been attributed to its location behind
an H II region (Gaustad et al. 2001; Villamariz & Herrero 2005). As
such, we stress that the results presented will likely not be typical
for a standard MSP. However, the benefit for more typical systems
will naturally depend on combinations of factors such as the ob-
serving frequency of the data set and the brightness of the pulsar
at low observing frequencies. Further application of the techniques
we have discussed in the preceding sections to a broader and more
typical population of pulsars will occur in subsequent work. Data
were collected using two receiver packages, a co-axial system at
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Figure 3. Top panels: injected values (red crosses) for scattering (left-hand panel) and DM variations (right-hand panel) used in the simulated data set
analysed in Section 3, and the recovered parameter estimates and 1σ confidence intervals from the global analysis (black points with uncertainties). Middle
panels: histograms of the residuals (red lines) after subtracting the maximum-likelihood parameter estimates from the injected values, compared to a Gaussian
distribution with unit variance (black lines) for the scattering (left-hand panel) and DM variations (right-hand panel). Error bars represent

√
N uncertainties

on the expected Gaussian distribution. Bottom left-hand panel: One-dimensional marginalized posterior probability distribution for the frequency scaling
parameter, α (cf. equation 10) from our analysis of the simulated data set described in Section 3. The simulated value is indicated with the vertical red line.
Bottom right-hand panel: Difference between the measured DM variations from the simulated data set when including scattering variations in the model, or
when assuming only a mean scattering parameter (red points, 1σ uncertainties). We compare this with a shifted and scaled measurement of the scattering
variations (black points, 1σ uncertainties). The Pearson product–moment correlation coefficient between the red and black points is 0.92 ± 0.04.
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10 and 40 cm and the centre pixel of a multibeam 20-cm system.
Data at 3100 (co-axial, hereafter ‘10 cm’) and 1369 MHz (multi-
beam, hereafter ‘20 cm’) were recorded using a digital polyphase
filterbank (PDFB4) with a typical resolution of 1024 channels
and 1024 bins and respective bandwidths of 1024 and 256 MHz.
Data from the lower co-axial band, centred at 732 MHz (hereafter
‘40 cm’), were recorded over a 64 MHz bandwidth with a sim-
ilar polyphase system, PDFB3. More details about the observing
systems and data reduction process are given in Manchester et al.
(2013). For all three systems, we average the profile data into eight
channels per band.

As there will be discrete time offsets (known as jumps) between
the different observing systems, we include these as free param-
eters in our analysis together with the rest of the timing model
parameters given in Table 1. In all the analysis that follows, we
include a model for the profile and smooth profile evolution as a
function of frequency using a quadratic polynomial in the shapelet
amplitudes, which we found was sufficient to describe the observed
variation. In addition, we then include DM variations using the
DMX parametrization (Demorest et al. 2013) in which the varia-
tions in DM are modelled as a piecewise constant function, and we
use an epoch length of 30 d, chosen so that the median number of
40 cm observations per epoch is one. Below we summarize three
scenarios used to investigate the impact scattering variations have
on the parameter estimates and uncertainties for the DM variations
and timing model parameters.

(S1) We include only the 10 and 20 cm data. No scattering vari-
ations are included in the model.

(S2) It is the same as (S1); however, we also include the 40 cm
data.

(S3) It is the same as (S2); however, we include scattering varia-
tions with the model described in Section 2.4, with the same cadence
as the DMX parameters.

As in our analysis of simulated data in Section 3, we also at-
tempt to recover the scaling of the scattering time-scale with fre-
quency. However, we find that the relatively narrow 40 cm band,
combined with the fact that the scattering variations are already
sub-dominant to the DM variations in the 20 cm band, means we
are unable to constrain the quantity in our analysis. We find that
the only quantity that varies significantly when changing the scal-
ing factor across a range of 3–5 is the mean scattering ; however,
the variations in scattering and their impact on the other parameter
estimates are consistent throughout. We have therefore set α = 4 in
all the results discussed below, and will refer only to the magnitude
of variations in the scattering time-scale, rather than the absolute
value.

4.1 DM variations

In Fig. 4 (top panel), we compare parameter estimates for the DM
variations in our PSR J1643−1224 data set for scenarios S1–S3
(red, blue and black points, respectively).

Excess time-correlated noise has been observed in this pul-
sar previously at low observing frequencies (<1 GHz; e.g. Keith
et al. 2013; Lentati et al. 2016, henceforth L16). In particular,
L16a analysed the first International Pulsar Timing Array data
set for PSR J1643−1224 and found that this ‘band noise’ had a
steep dependence on observing frequency, such that above 1 GHz
the timing fluctuations were consistent with DM variations only.
We can therefore expect that in scenario (S1) we will also be
dominated by DM variations, rather than scattering variations.

We find that the changes in the DM are consistent with the
smooth variations observed in L16a when including band-noise
terms.

When including the 40 cm data in our analysis in scenario (S2),
significant additional structure can be seen in the DM that is in-
consistent with the variations observed from scenario (S1). This
structure has been reported previously in the literature as being the
result of yearly variations in the DM (e.g. Arzoumanian et al. 2015;
Jones et al. 2016)

In scenario (S3), the additional structure seen in scenario (S2)
is no longer present, and we find the parameter estimates are con-
sistent with those obtained from scenario (S1). That the parameter
estimates for the DM variations are inconsistent between scenarios
(S1) and (S2) is highly suggestive that unmodelled effects present
in the 40 cm data are introducing bias into our analysis, and are
subsequently mitigated when including scattering variations into
the model.

4.2 Scattering variations

In the middle panel of Fig. 4, we show the parameter estimates for
the variations in the scattering time-scale, τ , from scenario (S3).
In the bottom panel of Fig. 4, we compare this structure with the
additional structure seen in the DM variations in scenario (S2)
compared to scenario (S1). In particular, we overplot the difference
in the DM variations from scenarios (S1) and (S2) (red points) with a
shifted and scaled version of the scattering variations (black points).
The two clearly mirror one another, implying that the additional DM
variations observed when adding low-frequency data in scenario
(S2) are the result of unmodelled scattering variations, consistent
with the result of not modelling the scattering variations observed
in the analysis of simulated data in Section 3.

It is clear, then, that simply adding low-frequency data without
considering scattering can significantly bias estimates of the DM
variations. With LOFAR (Stappers et al. 2011) already performing
pulsar timing at frequencies of 100–200 MHz, and upcoming tele-
scopes such as the Square Kilometre Array providing unprecedented
sensitivity in the frequency range of 500–800 MHz, this bias intro-
duced into the analysis when failing to appropriately model scatter-
ing variations will become extremely important, especially in the
context of gravitational wave astronomy using a pulsar timing array.
Looking forward, this will become increasingly true even if we con-
sider only more ‘typical’ pulsars compared to PSR J1643−1224.
This is both because in the SKA era we can expect to add many
distant pulsars to PTAs, for which the presence of detectable vari-
ations in scattering will be increasingly probable, and also simply
because by observing for longer the impact of such effects will
grow.

4.3 Timing bias

Existing methods for incorporating scattering variations into pul-
sar timing have suggested using maximum-likelihood estimates of
scattering delays and ‘correcting’ the measured ToA by fixing that
delay in the subsequent timing analysis. This can be done either
by obtaining estimates of the delay from measurements of scintil-
lation, as in Levin et al. (2016), or using cyclic spectroscopy (e.g.
Palliyaguru et al. 2015). With the profile domain framework, we
can directly compare the impact of fixing the scattering time-scales
in the analysis at their maximum-likelihood values, which is equiv-
alent to simply fixing the time delay induced by the scattering when
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Figure 4. Top panel: mean parameter estimates and 1σ confidence intervals for the DM variations in the PSR J1643−1224 data set for three different scenarios:
(1) including only the 10 and 20 cm data, and including no scattering variations in the model (red points), (2) including 10, 20 and 40 cm data, and including
no scattering variations in the model (blue points), and (3) Including 10, 20 and 40 cm data, and including scattering variations in the model (black points).
Middle panel: the variations in the scattering time-scale, τ and 1σ confidence intervals from our analysis of the full PSR J1643−1224 data set (black points).
Bottom panel: Difference between the measured DM variations from scenarios (S2) and (S3) (red points), compared to a shifted and scaled version of the
scattering variations from scenario (S3) (black points).

performing the analysis using ToAs. We find that fixing the scatter-
ing time-scales results in significant bias in the uncertainties for the
DM variations of a factor of ∼1.8, with some epochs being much
larger when less multifrequency information was available.

In Table 1, we list the timing model parameter estimates for all
three scenarios, and in Fig. 5, we then compare the parameter es-
timates between scenarios (S1) and (S2), and scenarios (S3) and
(S2). The bias in the parameter estimates introduced as a result of
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Figure 5. Difference in the measured timing parameters in terms of their
uncertainties between scenarios (S1) and (S2) (red points), and scenarios
(S3) and (S2) (black points).

not modelling the scattering variations is substantial in several of
the astrometric parameters. From the middle panel of Fig. 4, there
is a clear annual term in the scattering signal that we would expect
to correlate strongly with both position and proper motion. This is
indeed the case, with both position in RA and proper motion in RA
suffering ∼4σ changes in the parameter estimates. For example,
the proper motion in RA changes from 6.0 ± 0.1 to 5.50 ± 0.06
when first adding in the 40 cm data without a model for scattering
variations, and then changes to 5.85 ± 0.08 when including scatter-
ing variations in the model.

A natural question to ask is whether it is worth including low-
frequency pulsar timing data into the analysis, if one is interested
only in the timing model parameters and not the behaviour of the
ISM. From Table 1, we can see that the uncertainties on the pa-
rameters from scenario (3) are still improved compared to scenario
(1), in which only the 10 and 20 cm data were included in the
analysis. Therefore, if the scattering variations are modelled appro-
priately such that no bias is introduced in the parameter estimates,
the addition of the 40 cm data does improve the precision of the
results.

However, this implies we must also ask whether the model used
for scattering is sufficient. If the thin screen assumption is not valid,
then bias will still enter into our parameter estimates. In Fig. 6,
we show the timing residuals after subtracting the timing model
given in Table 1 obtained from our analysis of scenario (S3). In the
middle panel, we then show the timing residuals obtained from the
maximum-likelihood model profile data that includes variation in
the pulse width due to scattering. In both cases, significant addi-
tional structure in the 40 cm data (magenta points) can clearly be
seen as a result of the scattering. In the bottom panel of Fig. 6, we
then show the difference between the first two panels. The residuals,
after subtracting out delays that result from scattering variations, are
consistent with white noise. We stress that this process is performed
purely for visualization of the profile domain model. As discussed,
simply subtracting the delay induced by scattering is not an appro-
priate means of correcting for scattering variations.

5 C O N C L U S I O N S

Over the last several years, different groups worldwide have sought
to improve the precision with which pulsar timing can be performed

by incorporating data across wide-band widths, extending to low
radio frequencies (<1 GHz). The principal aim was to better correct
for DM variations, which are known to dominate the noise budget
for the majority of millisecond pulsars being used as part of an
ongoing effort to detect gravitational waves in the nHz band.

As better models for these DM variations were developed, excess
noise in this low-frequency data has been observed in an increasing
number of pulsars. In Lentati et al. (2016), four pulsars in the Inter-
national Pulsar Timing Array data release were found to have ‘band
noise’, including PSR J1643−1224. Even the most stable millisec-
ond pulsar known to date, PSR J1909−3744, has been observed
to suffer from band noise in the low-frequency data, which, unless
modelled appropriately, decreased the sensitivity of the data set to
gravitational waves by a factor of 2 (Shannon et al. 2015).

These band-noise models described the excess noise as time-
correlated shifts in the arrival time of the pulses. Ultimately, how-
ever, if the origin of this noise is the result of time-variable broad-
ening of the pulse profile due to scattering in the IISM, describing
it in terms of shifts in the ToAs will be sub-optimal compared to
appropriately modelling the changes in the pulse shape.

We have described a statistically robust approach to incorporating
models for scattering into pulsar timing analysis by extending the
existing profile-domain timing framework. This approach makes it
possible to simultaneously estimate temporal variations in both the
DM and scattering, together with a model for the pulse profile that
includes smooth evolution as a function of frequency, the pulsars
timing model and models for pulse jitter.

We have shown that unless both the DM variations and scattering
are sampled together in the timing analysis, one can significantly un-
derestimate the uncertainties in both the DM and the arrival time of
the pulse, leading to bias in the timing parameters. This means that
fixing the scattering time-scales and simply ‘correcting’ the ToAs,
as has been suggested as a means of handling scattering variations in
the literature, is not a viable approach to performing a robust analy-
sis of low-frequency pulsar timing data. We also showed, however,
that the true PDF of the arrival time of the pulse can be highly
non-Gaussian when scattering is only marginally detected. In this
case, the typical procedure for forming a ToA, which assumes a
Gaussian approximation to the true PDF, is inappropriate. How-
ever, by performing a profile domain analysis the non-Gaussianity
of the PDF is automatically incorporated into the final parameter
estimates.

We have applied our method using a new, publicly available,
GPU-accelerated code both to simulations and observations of the
millisecond pulsar PSR J1643−1224 that cover a frequency range
from 700 up to 3800 MHz over a period of 4.7 yr. This particular
MSP was chosen because it is known to display significant scatter-
ing variability compared to typical MSPs. The techniques we have
introduced will be applied to a broader and more typical population
of pulsars in subsequent work. When including the low-frequency
data in the PSR J1643−1224 analysis, the parameter estimates for
both the DM variations and timing model are significantly biased by
the variations in the pulse width due to scattering. Further, simply
fixing the scattering time-scales to maximum-likelihood values –
equivalent to fixing the time offset when making ToAs – results in
almost a factor 2 underestimation in the uncertainties of the DM
variations compared to the simultaneous analysis.

If low-frequency observations from telescopes such as LOFAR
or the Square Kilometre Array are to be incorporated into pulsar
timing analysis, then the bias that results from failing to appropri-
ately model scattering variations will become extremely important.
The increased sensitivity afforded by these instruments will likely
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Figure 6. Top panel: timing residuals after subtracting the maximum-likelihood timing model, including DM variations obtained from the profile domain
analysis performed in scenario (S3). Colours in this, and low panels, indicate the observing frequency of the data: 10 (cyan points), 20 (black points) and 40 cm
(magenta points). Middle panel: model residuals obtained by forming ToAs from the maximum-likelihood model profiles from scenario (S3), and subtracting
the same timing-model as in the top panel. The time-variable broadening introduced by the scattering model results in completely consistent structure as
the observed ToAs. (Bottom panel) The difference between the residuals in the top and middle panels. The ‘corrected’ residuals are now consistent with
white-noise; however, we stress this is only to be used figuratively. The residuals obtained by subtracting the maximum-likelihood timing offsets introduced
by scattering should not be used for analysis as they do not propagate the uncertainties in the scattering parameters through to the timing uncertainties.

require more complex models than simple thin-screen approxima-
tions for scattering. Any differences between the true PBF and
the models used will manifest as additional band-dependent noise,
downweighting the low-frequency data. Given finite observing time,
one must ask how much of that time to spend observing at low fre-
quencies. If we are able to completely model the variations in pulse
shape, then low-frequency observations will naturally be of great

benefit. The actual improvement, however, will vary from pulsar to
pulsar depending on the strength and complexity of the scattering
variations.

For pulsars that are bright at high frequencies (�3 GHz), the
optimal approach may well be to spend all available observing time
in a regime where IISM effects are negligible. Such an approach
has already resulted in the most sensitive limit on an isotropic
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gravitational wave background using a pulsar timing array to date
(Shannon et al. 2015). However, pulsars are known to have steep
spectral indices (Sν ∝ ν−1.8 on average, Maron et al. 2000), and
so in many cases observations at lower frequencies are necessary.
In such instances, our ability to propagate our uncertainties in the
scattering variability through to all other parameters will be critical,
especially in the context of gravitational wave astronomy. This is all
handled automatically as part of a profile domain analysis, which
will inevitably form the basis of modern, broad-band pulsar timing
analysis moving forward.
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